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Objectives 

The fatigue life of the vertical twin tails of high-performance aircraft, such 
as the F-15 and F-18, is well below what is expected due to buffeting. The 
buffet loading under some maneuver conditions can cause vertical tail tip 
deflections of the order of 6 inches, in the frequency range 8.94-39.0 Hz and 
beyond. The large oscillatory motions are caused by the pressure fluctuations 
in the wakes emanating from certain upstream components of the aircraft 
impinging, or nearly impinging, on the tails. The large-amplitude motions 
can cause one or more of the following problems: (a) Torque box disbond, (b) 
forward box disbond, (c) loose support fasteners, (d) broken shear tangs, (f) 
closure disbond, and (g) forward box skin, fitting and closure cracks. Fatigue 
damage near the 2-in tip pod of an F-15 was reported in 1975, the 2-in pod 
on a F-15 broke in 1978, and cracks in the 6-in tip pod fitting on an F-15 
developed in 1979. 

It is known, but not well understood in some cases, that energy can be 
introduced into a structure by a small-amplitude, high-frequency excitation, 
and once it is in the structure it can be transferred from high-frequency 
modes down to low-frequency modes. The danger inherent in such a trans- 
formation is that the corresponding motion is transformed from a high- 
frequency, low-amplitude motion into a low-frequency, high-amplitude mo- 
tion. In other words, a small-amplitude, high-frequency excitation can excite 
a large-amplitude, low-frequency response. It is clear that such shifts in the 
internal energy distributions occur in a very broad class of dynamic systems, 
including the vertical tails of aircraft. Of course, it is the large amplitude 
that causes the problems. The large oscillatory motions are responsible for 
significantly lowering the fatigue life of the tail structures well below what 
was expected. The excitations are the result of wakes from certain upstream 
components of the configuration impinging, or nearly impinging, on the tails. 
The pressure fluctuations in these wakes are what excite the tail structures. 
Examples of such phenomena have been observed in the VPI&SU Nonlin- 
ear Dynamics Laboratory. It does appear that certain structures are much 
more vulnerable to this transformation of energy than others, and it may 
very well be that the inherent symmetry of twin-tail structures is a generic 
characteristic that enhances the transfer of energy from high-frequency to 
low-frequency modes and hence exacerbates the buffet problem. 

The objectives of this project were to investigate theoretically and exper- 
imentally the large-amplitude motions of the twin vertical tail assemblies of 



high-performance aircraft and develop control strategies to alleviate buffet 
in these assemblies. 

Accomplishments/New Findings 

We carried out experiments on a structural dynamic model of the twin-tail 
assembly of the F-15 fighter built by Professor Sathya Hanagud of Georgia 
Tech. The model was placed on a 250-lb shaker and subjected to a princi- 
pal parametric excitation. We fixed the excitation amplitude and varied the 
excitation frequency around 18 Hz. For the same excitation amplitude and 
frequency, we found five possible responses depending on the initial condi- 
tions: (a) very small-amplitude motions of both tails, (b) a large-amplitude 
motion of the right tail accompanied by a small-amplitude motion of the left 
tail, (c) a large-amplitude motion of the left tail accompanied by a small- 
amplitude motion of the right tail, (d) a large-amplitude motion involving 
both tails moving in phase, and (e) a large-amplitude motion involving both 
tails moving out-of-phase. The coexisting five responses are the result of 
the nonlinearities. These results point out some of the shortcomings of test- 
ing models with one rigid and one flexible tail or even testing only one tail 
counting on symmetry. An interesting phenomenon was observed in the re- 
sponse of the scaled model. Fixing the excitation amplitude and frequency 
and plucking one tail, we observed that the oscillations of the plucked tail 
decayed with time and the unplucked tail oscillated with a large amplitude. 

We used nonlinear identification techniques to estimate the linear and 
nonlinear parameters in a mathematical model of the tail assembly. Then we 
devised a control methodology to suppress the vibrations of the structural 
model. Finally, we used the backpropagation-through-time neural controller 
to suppress its nonlinear responses. In the experiments that we conducted the 
response contains only components with frequencies near the first bending 
modes and their harmonics. Therefore, we modeled the dynamics of the 
tails with the following two mass-normalized second-order coupled differential 
equations: 

üi+ului   =   -2/j.iüi - awl - ii3iii \ üi \+k(u2 - ui) + Ti       (1) 

Ü2 + u\u2    =    — 2/X2**2 - Ot2u\ - /Z4U2 I ü2 I +k(ui - u2) + T2 (2) 

where u\ and u2 denote the generalized coordinates of the first bending modes 
of the two tails and U\ and u2 are their first linear undamped natural frequen- 
cies. For energy dissipation, we incorporated linear and quadratic damping 



terms. To account for large deflections, we added a cubic nonlinear term to 
each oscillator. Also, we included linear coupling terms to account for struc- 
tural as well as aerodynamic coupling between the tails. Here T\ and T2 are 
the control forces. We used a combination of experimental modal analysis, 
nonlinear vibration testing, and perturbation methods to identify the linear 
and nonlinear coefficients in the mathematical model. 

We used the method of multiple scales to derive four first-order nonlin- 
ear differential equations governing the modulation of the amplitudes and 
phases of both tails. These equations were used to calculate the steady- 
state amplitudes and phases as functions of the excitation amplitude and 
frequency. We estimated the parameters of the model from regressive fits of 
the experimentally and theoretically determined steady-state response ampli- 
tudes. The identified parameters for the right tail are [1] Ci = 0.01357, ßz = 
3.157 x 10-V"1, «i = -3.675 x 10~2^, and ^ = 161.54 -^. The iden- 
tified parameters for the left tail are C2 = 0.01856, ß± — 1.958864 x 10-4 

/«r1,^ = -2.977 x 10~3 -57-?, and m = 275.12-4. Figure 1 shows a 
good agreement between the theoretically and experimentally obtained force- 
response curves. 

A nonlinear control law based on cubic velocity feedback was used; that is, 
T\ = —Giiil and T2 = — G2W3,. The performance of the control technique was 
evaluated by comparing the controlled and uncontrolled frequency-response 
curves. In Figure 2, we show the frequency-response curves of the open- and 
closed-loop system for both the right and left tails. The response amplitudes 
depend on the excitation frequency and the initial conditions. The solid 
lines correspond to stable solutions, whereas the dashed lines correspond 
to unstable solutions. All of the bifurcations are saddle-node and pitchfork 
bifurcations. The latter are approximately at the frequencies 19.0 Hz and 
21.6 Hz. Curves (a-e) show the responses of both tails as the controller gain 
is increased. It is clear that, as the controller gain increases, the response 
amplitudes of both tails decrease. Also, the bandwidth where the different 
responses occur decreases. For example, it is clear from curve(e) that the 
different coexisting responses in the frequency range 17.3 Hz to 19 Hz are 
completely eliminated. Also, all of the dangerous (subcritical) bifurcations 
are transformed into safe (supercritical) bifurcations; the jumps are elimi- 
nated. 

Then, we conducted experiments using piezoelectric actuators to validate 
the theoretical analysis. We forced the twin-tail assembly at 3.1 g and con- 



ducted forward and reverse frequency sweeps. The acceleration of the shaker 
head was monitored, and the input voltage driving the shaker head was ad- 
justed to maintain a constant forcing amplitude. In Figure 3, we show the 
open- and closed-loop frequency-response curves for the right and left tails 
for the out-of-phase response. The theoretical and experimental findings 
indicate that the control law is both an effective vibration suppressor and 
bifurcation controller [2]. 

Another means of identification and control of the nonlinear system is 
through the use of neural networks. In this study, the backpropagation- 
through-time neural controller (BTTNC) was used in the active control of 
the F-15 tail section under strong dynamic loadings. Figure 4 displays the 
results of training the cascaded system. From this figure, it is clear that the 
neurocontroller suppressed the steady-state vibrations of the two tails [3]. 

A new strategy, based on the nonlinear phenomenon of saturation, is 
proposed for controlling the flutter of a wing. The concept is illustrated 
by means of an example with a rather flexible, high-aspect wing of the type 
found on such vehicles as HALE aircraft and sailplanes. The wing is modeled 
structurally as an Euler-Bernoulli beam with inertially coupled bending and 
twisting motions. A general unsteady nonlinear vortex-lattice technique is 
used to model the flow around the wing and provide the aerodynamic loads. 
The structure, the flowing air, and the controller are considered the elements 
of a single dynamic system, and all of the coupled equations of motion are 
simultaneously and interactively integrated numerically in the time domain. 
The results indicate that the aerodynamic nonlinearities alone can be re- 
sponsible for limit-cycle oscillations and that the saturation controller can 
effectively suppress the flutter oscillations of the wing when the controller 
frequency is actively tuned. 
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has included our findings on modal energy extraction in his basic research 
plans to support current and future developmental research in smart struc- 
tures. 

We have a grant with Cessna Aircraft Company to develop a nonlinear 
aeroelasticity code that couples the nonlinear dynamics of wings with an 
unsteady nonlinear aerodynamic model. 

Dr. Nayfeh has acted as a consultant with Rohini International on an 
SBIR Phase II on Buffet Alleviation from the Structures Division of the 
Flight Dynamics Directorate at Wright Laboratory. 

We have developed and delivered to Cessna Aircraft Company a nonlin- 
ear aeroelasticity time-domain code that couples the structural dynamics of 
wings with an unsteady nonlinear aerodynamic model. The aerodynamics 
of the whole aircraft is modeled. The code predicts flutter and post nutter, 
including limit cycles. 

New Discoveries, Inventions, or Patent Disclo- 
sures 

None 

Honors/ Awards 

A. H. Nayfeh 

1. A. H. Nayfeh, American Institute of Aeronautics and Astronautics Pen- 
dray Aerospace Literature Award, 1995 

(For seminal contributions to perturbation methods, nonlinear dynam- 
ics, acoustics, and boundary-layer transition; praiseworthy for their 
quality relevance, timeliness, and lasting influence on the aerospace 
community. 

2. Honorary Doctorate, St. Petersburg University, Russia, 1996 
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3. American Society of Mechanical Engineers J. P. Den Hartog Award, 
1997 (Presented in recognition of lifetime contributions to the teaching 
and practice of vibration engineering.) 

4. Frank J.Maher Award for Excellence in Engineering Education, 1997 

5. College of Engineering Dean's Award for Excellence in Research, 1998 

6. Honorary Doctorate, Technical University of Munich, Munich, Ger- 
many, 1999 

7. Fellow of American Institute of Aeronautics and Astronautics, Ameri- 
can Academy of Mechanics, American Physical Society, Society of De- 
sign and Process Science, and American Society of Mechanical Engi- 
neering 

D. T. Mook 

1. Frank J. Maher Award for Excellence in Engineering Education, 1983 

2. American Institute of Aeronautics and Astronautics (Associate Fellow) 

3. American Academy of Mechanics (Fellow) 

4. American Society of Mechanical Engineers (Fellow) 
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Figure 1: (a)Experimentally obtained force-response curves at 18.0 Hz. (For- 
ward Sweep) (b)Theoretically obtained amplitude-response curve at 18.0 Hz 
when k = 87 (1 /sec2). 
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Frequency, Hz 

(i) right tail 

(ii) left tail 

Figure 2: Effect of varying the feedback gain on the frequency-response curves 
of the specified tail (F=3.2 g): a) G=0, b)G=0.01, c)G=0.1, d)G=l, 
e) G=10. 
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Figure 3: Frequency-response curves of the out-of-phase responses before and 
after control. 
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Figure 4: Time histories of the responses of the tails (-) without control and 
(-.)with control. 
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